
JOURNAL OF MATERIALS SCIENCE35 (2000 )2937– 2948

Predicting times to low strain for a 1CrMoV rotor

steel using a 6-θ projection technique

M. EVANS
Department of Materials Engineering, University of Wales Swansea,
Singleton Park, Swansea, UK, SA2 8PP
E-mail: m.evans@swansea.ac.uk

The θ projection method of creep analysis is known to produce the poorest predictions of
creep properties at low strains. This paper applies a recently suggested modification of the
θ concept to 1CrMoV rotor steel where long term data exists to enable an assessment of
this modification to be made. The modification takes the form of two additional θ terms that
allow the initial stages of any creep curve to be modelled more accurately. The paper
shows that the resulting 6-θ approach produces predictions of long-term failure times and
minimum creep rates that are as good as those obtained using the traditional 4-θ approach.
Unlike the 4-θ approach, the 6-θ approach is also shown to be capable of accurately
predicting times to very low strains (0.05% and 0.1%) at stress levels as low as 77 MPa (well
below the lowest stress of 230 MPa used in the theta analysis). For times to 1.0% strain or
more the 4-θ and 6-θ techniques give similar short and long-term predictions.
C© 2000 Kluwer Academic Publishers

1. Introduction
When designing materials for high temperature service
the design criteria for long term operation must guaran-
tee that creep deformation should not cause excessive
distortion over the planned service life and that creep
failure should not occur within such a required operat-
ing life. Such creep fracture represents an obvious ‘life
limiting’ design consideration as fracture of pipework
or other major components used by nuclear powered
electricity generating plants could prove catastrophic.
For this reason, studying their ability to predict the time
to rupture strain has been the major criteria used to
assess creep extrapolation techniques. However, sub-
stantial problems can also be encountered due to ex-
cessive creep distortion. There are numerous examples
of such deformation limits within the power generation
and aero engine industries. For example, the blades of
a steam turbine cannot be allowed to extend until they
foul the surrounding casting. Similar requirements exist
for the blades used in a gas turbine aeroengine.

The θ projection technique [1, 2] is ideally suited
to the prediction of times to various low strains rather
than just times to rupture strain. Traditional parametric
procedures (such as the Larson-Miller technique [3])
are not considered here because they are limited to
the prediction of times to rupture strain. In contrast,
theθ methodology allows the whole creep curve to be
extrapolated to design (low) stresses from accelerated
stresses. Time to any strain can then be ‘read off’ from
such extrapolated creep curves.

The 1CrMoV rotor steel data set published by Evans
et al. [4] will be used to study the predictions made
of time to various low strains using theθ projection

concept. Whilst Evanset al.have already assessed the
ability of theθ projection technique to extrapolate mini-
mum creep rates and failure times from this accelerated
test data, they have not assessed its ability to predict low
strain times. This paper addresses this shortcoming and
then goes on to show how theθ prediction technique
can be modified along the lines recently suggested by
Evans [5] to improve such low strain time predictions.

This paper is therefore structured as follows. First,
the experimental procedure and database are dis-
cussed. The following section then briefly reviews the
θ methodology so that key differences between the tra-
ditional 4-θ concept and the new 6-θ concept become
clear. Section 4 compares and contrasts the 4-θ and 6-θ
creep curves obtained under the accelerated test condi-
tions. Section 5 then assesses the accuracy of the long-
term predictions made for the minimum creep rate, time
to rupture strain and time to various low strains using
the 4-θ and 6-θ techniques. A final section concludes.

2. Experimental procedures
The batch of material used for the present investiga-
tion represents the lower bound creep strength proper-
ties anticipated for 1CrMoV rotor steels. The chemical
composition of this batch of material (in wt %) was de-
termined as 0.27%C, 0.22%Si, 0.77%Mn, 0.008%S,
0.015%P, 0.97%Cr, 0.76%Ni, 0.85%Mo, 0.39%V,
0.125%Cu, 0.008%Al and 0.017%Sn. Following oil
quenching from 1238 K and tempering at 973 K, the
material had a tensile strength of 741 MPa, elongation
of 17%, reduction in area of 55% and a 0.2% proof
stress of 618 MPa.
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Figure 1 Constant stress creep curves recorded for 1CrMoV rotor steel in tests carried out at 823 K. The solid lines represent smoothing through the
creep strain/time recordings.

Nineteen test pieces, with a gauge length of 25.4 mm
and a diameter of 3.8 mm, were tested in tension over
a range of stresses at 783 K, 823 K and 863 K using
high precision constant-stress machines [6]. At 783 K,
six specimens were placed on test over the stress range
425 MPa to 290 MPa, at 823 K seven specimens were
placed on test over the stress range 335 MPa to 230 MPa
and at 863 K six specimens were tested over the stress
range 250 MPa to 165 MPa. Up to 400 creep strain/time
readings were taken during each of these tests. Normal
creep curves were observed under all these test condi-
tions, as illustrated in Fig. 1.

These nineteen specimens represent the accelerated
test data to which variousθ projection techniques will
be applied below. To assess the extrapolative capability
of these techniques long-term property data was sup-
plied independently by an industrial consortium involv-
ing GEC-Alsthom, Babcocks Energy, National Power,
PowerGen and Nuclear Electric. These long-term prop-
erties came from the same batch of material used in
the accelerated test programme described above but for
specimens with gauge lengths of 125 mm and diameters
of 14 mm that were subjected to tests on high sensitivity
constant-load tensile creep machines. It is important to
note that in all cases below theθ projection techniques
did not make use of this long-term property data. Theθ

techniques used only the accelerated test data to predict
the properties of these longer-term test results.

3. The θ projection concept: Old and new
3.1. The technique
The 4-θ technique describes the shape of any creep
curve displaying normal primary and tertiary stages by
using four theta parameters through the equation

εt = θ1(1− e−θ2t )+ θ3(eθ4t − 1) (1)

whereεt is the creep strain recorded at timet (with n
such recordings in total). In Equation 1,θ1 quantifies
the total primary strain,θ2 the curvature of the creep
curve during primary creep,θ3 scales the tertiary creep

strain andθ4 measures the curvature of the creep curve
during tertiary creep.

The idea is then to test various specimens at accel-
erated stresses (σ j ) and temperatures (Tj ) and then to
fit Equation 1, using non linear optimisation techniques
(see Section 3.2 below), to each of the resulting creep
curves. Eachθi (i = 1 to 4) is then related to the acceler-
ated test conditions through a simple ‘linear’ expression
of the form

L[θi j ] = βi 0+ βi 1σ j + βi 2Tj + βi 3σ j Tj (2)

whereσ j is the stress associated with test condition
j and Tj the temperature associated with test condi-
tion j ( j = 1 to m). βi 0 to βi 3 are constants that can
be estimated using linear least squares. Alternatively,
weighted least squares can be used to reflect the fact
that eachθi j value is only an estimate of its true value.
The weights used must reflect the different uncertainties
associated with eachθi j . Eachθi can then be extrapo-
lated to lower stresses and temperatures by simply sub-
stituting the required test conditions into Equation 2.
Let θ̃i j represents such extrapolated theta values. It is
now possible to use these values to predict a variety
of creep properties at close to the operating conditions
for a designed material. For example, a prediction of
the minimum creep rate at conditionj can be found by
substituting

tM = 1

θ̃2 j + θ̃4 j
ln
θ̃1 j θ̃

2
2 j

θ̃3 j θ̃
2
4 j

(3)

for t and θ̃i j for θi into

ε̇t = θ1θ2e−θ2t + θ3θ4eθ4t (4)

whereε̇t is the creep rate at timet . Similarly, a predic-
tion of the time to reach some specified creep strain,ε∗,
can be obtained by solving numerically for time in the
equation

θ̃1 j (1− e− θ̃2 j t )+ θ̃3 j (e
θ̃4 j t − 1)− ε∗ = 0. (5)
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As a special case of this, the failure timetF can be
predicted by solving Equation 5 whenε∗ equals the rup-
ture strain. Of course this requires the rupture strain to
be extrapolated to the required conditions as well. This
is typical done using a formula similar to Equation 2
(i.e. replaceθi j with εF

j whereεF
j is the rupture strain

observed at the accelerated test conditions).
A number of factors govern the precision of this 4-θ

projection technique. One is the ability of Equation 2
to accurately characterise the dependency of a creep
curves shape on test conditions. It may well be the case
that theθi j ’s are related to stress and temperature in
a more complex non-linear way. It is here that scope
may exist for the incorporation of neural networks into
the Theta projection concept. A second governing fac-
tor is the degree to which Equation 1 represents the
experimental creep curve. It is well known by practi-
tioners of this technique that although Equation 1 is a
very good representation of creep curves for materials
of moderate to high ductility, it gives quite a poor fit
at low strains and times. This inevitably leads to dif-
ficulties in the prediction of very low strain properties
using Equation 5 (such as time to 0.5% strain). But be-
cause this mis-specification is over very rapidly, it is
to be expected that this has virtually no effect on creep
properties such as the minimum creep rate and time to
failure.

Evans [5] has recently suggested a solution to this
mis-specification problem that should improve the pre-
diction of low strain properties using the Theta projec-
tion technique. A general model function that has the
same form as Equation 1 is

εt = η(θ ) =
q∑

i=1

θ2i−1(1− e−θ2i ). (6)

If θ2i−1> 0, thei th term in this series represents a pro-
cess which has a creep rate decreasing with increas-
ing time (e.g. a normal primary curve). Ifθ2i−1< 0 and
θ2i < 0 the term has a rate which increases with increas-
ing time (e.g. a tertiary process). The fit of this model
to any experimental creep curve can be made as close
as desired by just increasing the value ofq. Although
there is no theoretical limit to the value ofq, each term
in Equation 6 needs to be capable of a theoretical expla-
nation in terms of micro mechanisms governing high
temperature creep. Also, estimating Equation 6 when
q is large presents huge practical problems in terms of
being able to actually estimate all theθi values. Cor-
relation’s between the estimatedθi values is likely to
prevent the identification of each and everyθi value.

Primary and tertiary creep in precipitation hardened
creep resisting alloys are known to be well represented
by the first and second terms in Equation 1 so that agree-
ment to experimental observation may be achieved by
the inclusion of just one further term

εt = θ1(1− e−θ2t )+ θ3(eθ4t − 1)+ θ5(1− e−θ6t ). (7)

θ5 andθ6 are two additional parameters required to im-
prove the fit of the creep curve to the experimental data
over the early primary stage. Using Equation 7 gives a

6-θ projection technique, where for example, the mini-
mum creep rate can be predicted by substituting in the
extrapolatedθ̃i j values into

θ1 j θ
2
2 j

θ3 j θ
2
4 j

et [−θ2 j−θ4 j ] + θ5 j θ
2
6 j

θ3 j θ
2
4 j

et [−θ6 j−θ4 j ] − 1= 0 (8)

and solving numerically. Again a prediction of the time
to reach some specified creep stainε∗ can be obtained
by solving numerically fort in the equation

θ̃1 j (1−e− θ̃2 j t )+ θ̃3 j (e
θ̃4 j t−1)+ θ̃5 j (1−e−θ̃6 j t )−ε∗ = 0.

(9)

The failure timetF can be predicted by solving Equa-
tion 9 whenε∗ equals the rupture strain. This will again
require the rupture strain to be extrapolated to the re-
quired conditions.

3.2. Estimation
Estimation of theθi parameters in Equation 1 and Equa-
tion 7 requires the use of non-linear optimisation algo-
rithms. These algorithms can then choose values for
θi that either minimise the squared deviations of all
the recorded strain values around the fitted creep curve
or maximise the joint probability of observing all the
recorded strain/time data points, i.e. maximise the so
called likelihood function. Ifet is used to represent
the deviation of each strain value from the fitted creep
curve, then Equation 7 can be expressed in stochastic
form as

εt = θ̃1(1− e−θ̃2t )+ θ̃3(eθ̃4t − 1)+ θ̃5(1− e−θ̃6t ) + et .

(10)

whereθ̃i is an estimate ofθi . These deviations arise for
many reasons. One reason is the mis-specification issue
addressed above where the values foret are expected
to diminish asq is increased. This asideet also results
from experimental inadequacies such as deficiencies
in extensometer design, transducers, and temperature
control. These experimental issues also inevitably result
in values foret being correlated with previous values
for et . This so called autocorrelation can be expressed
in the following way

et = ρet−1+ vt (11)

whereρ is the first order autocorrelation coefficient,
et−1 is the previously recorded value fore andvt is an
additional error variable that is free of autocorrelation.
If such autocorrelation is ignored when using an optimi-
sation algorithm to estimate eachθi , then although the
resulting estimates will be unbiased they will be ineffi-
cient. That is, the uncertainty or variability associated
with each estimate ofθi will be under estimated. Thus
the non linear least squares approach chooses values
for θi andρ such that

∑n
1 v

2
t is minimised, where

vt = εt −
{
θ̃1(1− e−θ̃2t )+ θ̃3(eθ̃4t − 1)

+ θ̃5(1− e−θ̃6t )
}− ρ{εt−1−

[
θ̃1(1− e−θ̃2t−1)

+ θ̃3(eθ̃4t−1− 1)+ θ̃5(1− e−θ̃6t−1)
]}

(12)
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(a)

(b)

(c)

Figure 2 (a) Comparison between experimental and predicted creep strains over the first 800 hours of testing using Equation 1 and Equation 7 at
863 K and 165 MPa. (b) Comparison between experimental and predicted creep strains over the last 600 hours of testing using Equation 1 and Equa-
tion 7 at 863 K and 165 MPa. (c) Comparison of deviations of experimental strains around Equation 1 and Equation 7 at 863 K and 165 MPa.
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(a)

Figure 3 (a) The variation ofθ2 andθ6 with stress at 783 K, 823 K and 863 K for 1CrMoV rotor steel. (b) The variation ofθ4 with stress at 783 K,
823 K and 863 K for 1CrMoV rotor steel. (c) The variation ofθ3 with stress at 783 K, 823 K and 863 K for 1CrMoV rotor steel. (d) The variation of
θ1 andθ5 with stress at 783 K, 823 K and 863 K for 1CrMoV rotor steel. (Continued)

2941



(b)

Figure 3 (Continued.)

If et is assumed to be normally distributed then the log
likelihood function forεt is of the form (see Greene [7]
for more details)

Log(L) = −0.9818− ln(s)+ 0.5 ln(1− ρ2)

− 1

2s2

{
(1− ρ2)(εt −U1)2

+ (εt −Ut − ρ(εt−1−Ut−1)2} (13)

where,Ut = θ̃1(1−e−θ̃2t )+ θ̃3(eθ̃4t−1)+ θ̃5(1−e−θ̃6t ),
U1 is the first value forUt ands is standard error forvt .
Even when normality is assumed, the least squares and
maximum likelihood techniques will only give the same
estimated values forθi whenρ = 0. In the presence of
autocorrelation the two techniques will give differing
estimates.

Equation 13 can be maximised or
∑n

1 v
2
t minimised

using any standard numerical optimisation technique.
This paper has made use of theSolverprogram within
Excel 97. This program uses the Newton-Raphson al-
gorithm with all central derivatives being estimated nu-
merically. Maximum likelihood was selected over the
least squares procedure usually adopted by theta prac-
titioners because it allows for future work to generalise
the distribution foret and so obtain more reliable con-
fidence bounds for any estimated creep curve.

Finally, there is the issue of how to estimate the val-
ues forβi in Equation 2. Ordinary least squares works
by minimising the squared deviation between the actual
θi j value and the estimated surface depicted by Equa-
tion 2. If e′i j represents such deviations for a givenθi j

thenβ0 to β3 are chosen to minimise
∑m

j=1 e′2i j . When
this technique is used the resulting 4-θ and 6-θ creep
property predictions are said to be unweighted. How-
ever, any value obtained forθi j is only an estimate of
its true value and, depending on the nature of the data,
someθi j ’s will be estimated with more reliability than
others. This reliability is of course measured by the
variance associated with eachθi j . This being the case
it makes sense to minimise a weighted error sum of

squares,
∑m

j=1(wi j e′2i j ). Evans [1] has shown that the
wi j weights should equal

wi j =
θ2

i j

Var{θi j )
(14)

where var(θi j ) is the variance associated with theθi j

estimate. This makes sense because the larger is the es-
timated value forθi j relative to the uncertainty associ-
ated with this estimate, the more influence that estimate
should have on the values forβi . When this technique
is used, the resulting 4-θ and 6-θ creep property pre-
dictions are said to be weighted.

4. Comparison of 4-θ and 6-θ estimates
In Fig. 2a the first 800 hours of the experimental creep
curve obtained at 863 K and 165 MPa is shown to-
gether with the fits obtained from using Equations 1
and 7. It is immediately apparent that the equation
containing sixθ ’s is a much better descriptor of the
strain data over all the times shown. This is especially
true for strain values below 0.015. Fig. 2b shows that
for the latter part of the creep curve both Equation 1
and Equation 7 fit equally well. This is further con-
firmed in Fig. 2c which shows the deviations (et values)
of the experimental strain data around the fitted creep
curves (using Equation 1 and Equation 7) from initi-
ation time to rupture time. The deviations around the
equation containing sixθi ’s oscillate tightly around the
zero axis almost until rupture strain occurs. It is there-
fore to be expected that the 6-θ approach will produce
better predictions than the 4-θ approach of times to low
strain but similar predictions of time to rupture strain.

Fig. 3a to d give a more complete comparison of the
6-θ and 4-θ results by showing the variation of eachθi

with stress and temperature. For comparison purposes
both Equation 1 and Equation 7 were estimated with the
θi estimates from Equation 1 being labelled old Theta’s
and theθi estimates from Equation 7 the new Theta’s.
Fig. 3a shows the rate parameters on the primary part
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(c)

Figure 3 (Continued.)

2943



(d)

Figure 3 (Continued.)
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(a)

(b)

Figure 4 (a) Constant-stress logσ /logεm relationships predicted from theθ data for the 1CrMoV rotor steel and 823 K. The plot includes the measured
εm values obtained from the short-term constant-stress tests at 823 K, and the long-term results of the constant-load tests at 823 K. (b) Predicted
logσ /logtF plots for constant stress conditions, compared with the measuredtF values obtained from short-term constant-stress tests and long-term
constant-load tests at 823 K.

of the creep curves. As can be seen one primary rate
(old θ2) is replaced by two new ones (newθ2 and new
θ6) with these new estimates being either side of the old
estimates. The unweighted best fit lines superimposed
around the experimental data show that the old and new
theta’s vary in a very similar way with stress. Further,
the new estimates forθ6 seems to vary more predictably
with stress that the oldθ2 estimates, whilst the newθ2
estimates has more variability about the best fit line
compared to the oldθ2 estimates.

Fig. 3b shows the rate term on the tertiary part of
the creep curves. It is very encouraging to note that
the new and old estimates forθ4 are very similar and
give almost identical trend line variations with stress.
Consequently, it is to be expected that the rupture time
predictions obtained from the 4-θ and 6-θ techniques
should be broadly comparable. The advantage of the
6-θ technique then being its ability to better predict
times to low strain by using the new estimates ofθ6.

Fig. 3c and d show the strain like quantities from
Equations 1 and 7. As reported previously for several

steels [8, 9] the old strain quantities (oldθ1 and old
θ3) do not vary markedly with stress and temperature.
The same also appears to be true for the new strain like
parameters—newθ1, newθ3 and newθ5.

5. Comparison of 4-θ and 6-θ long
term predictions

Fig. 4a shows the relationship between the natural log of
the minimum creep rate and stress predicted from the
unweighted 4-θ and 6-θ relationships, together with
the measured short-term and long-term property val-
ues. (Weighting had little affect on the predictions).
The predicted behaviour patterns agree very well with
the measured long-term data, with the 6-θ relationship
performing marginally better at the lower two stress
readings.

Fig. 4b shows the relationship between stress and
time to failure predicted from the 4-θ and 6-θ relation-
ships, together with the measured short-term and long-
term property values. Again the predicted behaviour
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(a)

(b)

(c)

Figure 5 (a) Predicted logσ /logt0.05% plots, compared with the measuredt0.05% values obtained from short-term constant-stress tests and long-
term constant-load tests at 823 K. (b) Predicted logσ /logt0.1% plots, compared with the measuredt0.1% values obtained from short-term constant-stress
tests and long-term constant-load tests at 823 K. (c) Predicted logσ /logt0.2% plots, compared with the measuredt0.2% values obtained from short-term
constant-stress tests and long-term constant-load tests at 823 K. (d) Predicted logσ /logt0.5% plots, compared with the measuredt0.5% values obtained
from short-term constant-stress tests and long-term constant-load tests at 823 K. (e) Predicted logσ /logt1.0% plots, compared with the measuredt1.0%

values obtained from short-term constant-stress tests and long-term constant-load tests at 823 K. (Continued)
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(d)

(e)

Figure 5 Continued.

agrees reasonably well with the measure long-term
data, with the 4-θ and 6-θ predictions being almost in-
distinguishable. This agrees well with the expectations
spelt out above. Weighting only had a visual affect on
the predictions when using the 6-θ approach at very
low stresses.

Fig. 5a to e shows the relationship between stress
and time to various low strains predicted from the 4-θ

and 6-θ relationships, together with the measured short-
term and long-term property values. A number of con-
clusions can be drawn from these Figures. First, the
6-θ approach yields very much improved interpola-
tions over the 4-θ approach at each and every strain
shown (the predictions are closer to the short-term
constant-stress test data). The interpolations obtained
from the 6-θ approach also improve with increasing
strain. Secondly, at very low strains (0.05% and 0.1%)
the 4-θ approach is hopeless at predicting the correct
long-term constant-load test data. At these strains, the
6-θ approach (in both weighted and unweighted form)
produces very good long-term predictions. Curiously,
at the relatively larger strains of 0.2% and 0.5%, the
4-θ approach does rather better in predicting the long-

term data obtained at stresses below 140 MPa—this in
spite of getting the interpolative properties completely
wrong. Finally, as the strain increases the short and
long-term predictions obtained from the 4-θ and 6-θ
approaches tend to converge upon one another. The
predictions of time to 1.0% strain, for example (see
Fig. 5e), obtained using the 4-θ and 6-θ approaches
are excellent and very similar. (Weighting has more of
an effect on the 6-θ predictions and so weighted 4-θ
predictions are not shown on these Figures.)

6. Conclusions
High precision constant-stress creep curves obtained
for 1CrMoV rotor steel over a range of stresses at
783 K, 823 K and 863 K were analysed using the 4-θ

and 6-θ projection concepts. The minimum creep rates
and times to failure down to 1.0E-08 and 30,558 hours
respectively were accurately predicted using both the 4-
θ and 6-θ approaches, when applied to data obtained in
tests with a maximum duration of 4450 hours. However,
unlike the 4-θ approach, the 6-θ approach was also ca-
pable of accurately predicting times to very low strains
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(0.05% and 0.1%) at stress levels as low as 77 MPa
(well below the lowest stress of 230 MPa used in the
theta analysis). For times to 1.0% strain or more the
4-θ and 6-θ techniques give similar short and long-term
predictions.
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